Database
BASIC TOPOLOGY
Topology
Topological bases
eltop2
Next ⟩
eltop3
Metamath Proof Explorer
Ascii
Unicode
Theorem
eltop2
Description:
Membership in a topology.
(Contributed by
NM
, 19-Jul-2006)
Ref
Expression
Assertion
eltop2
⊢
J
∈
Top
→
A
∈
J
↔
∀
x
∈
A
∃
y
∈
J
x
∈
y
∧
y
⊆
A
Proof
Step
Hyp
Ref
Expression
1
tgtop
⊢
J
∈
Top
→
topGen
⁡
J
=
J
2
1
eleq2d
⊢
J
∈
Top
→
A
∈
topGen
⁡
J
↔
A
∈
J
3
eltg2b
⊢
J
∈
Top
→
A
∈
topGen
⁡
J
↔
∀
x
∈
A
∃
y
∈
J
x
∈
y
∧
y
⊆
A
4
2
3
bitr3d
⊢
J
∈
Top
→
A
∈
J
↔
∀
x
∈
A
∃
y
∈
J
x
∈
y
∧
y
⊆
A