Database
BASIC TOPOLOGY
Topology
Topological bases
eltop3
Next ⟩
fibas
Metamath Proof Explorer
Ascii
Unicode
Theorem
eltop3
Description:
Membership in a topology.
(Contributed by
NM
, 19-Jul-2006)
Ref
Expression
Assertion
eltop3
⊢
J
∈
Top
→
A
∈
J
↔
∃
x
x
⊆
J
∧
A
=
⋃
x
Proof
Step
Hyp
Ref
Expression
1
tgtop
⊢
J
∈
Top
→
topGen
⁡
J
=
J
2
1
eleq2d
⊢
J
∈
Top
→
A
∈
topGen
⁡
J
↔
A
∈
J
3
eltg3
⊢
J
∈
Top
→
A
∈
topGen
⁡
J
↔
∃
x
x
⊆
J
∧
A
=
⋃
x
4
2
3
bitr3d
⊢
J
∈
Top
→
A
∈
J
↔
∃
x
x
⊆
J
∧
A
=
⋃
x