Metamath Proof Explorer


Theorem eltop3

Description: Membership in a topology. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion eltop3 J Top A J x x J A = x

Proof

Step Hyp Ref Expression
1 tgtop J Top topGen J = J
2 1 eleq2d J Top A topGen J A J
3 eltg3 J Top A topGen J x x J A = x
4 2 3 bitr3d J Top A J x x J A = x