Database
BASIC TOPOLOGY
Topology
Topological spaces
Topological spaces
eltpsi
Metamath Proof Explorer
Description: Properties that determine a topological space from a construction (using
no explicit indices). (Contributed by NM , 20-Oct-2012) (Revised by Mario Carneiro , 13-Aug-2015)
Ref
Expression
Hypotheses
eltpsi.k
⊢ K = Base ndx A TopSet ⁡ ndx J
eltpsi.u
⊢ A = ⋃ J
eltpsi.j
⊢ J ∈ Top
Assertion
eltpsi
⊢ K ∈ TopSp
Proof
Step
Hyp
Ref
Expression
1
eltpsi.k
⊢ K = Base ndx A TopSet ⁡ ndx J
2
eltpsi.u
⊢ A = ⋃ J
3
eltpsi.j
⊢ J ∈ Top
4
2
toptopon
⊢ J ∈ Top ↔ J ∈ TopOn ⁡ A
5
3 4
mpbi
⊢ J ∈ TopOn ⁡ A
6
1
eltpsg
⊢ J ∈ TopOn ⁡ A → K ∈ TopSp
7
5 6
ax-mp
⊢ K ∈ TopSp