Metamath Proof Explorer


Theorem eltpsi

Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses eltpsi.k K = Base ndx A TopSet ndx J
eltpsi.u A = J
eltpsi.j J Top
Assertion eltpsi K TopSp

Proof

Step Hyp Ref Expression
1 eltpsi.k K = Base ndx A TopSet ndx J
2 eltpsi.u A = J
3 eltpsi.j J Top
4 2 toptopon J Top J TopOn A
5 3 4 mpbi J TopOn A
6 1 eltpsg J TopOn A K TopSp
7 5 6 ax-mp K TopSp