Metamath Proof Explorer


Theorem elun

Description: Expansion of membership in class union. Theorem 12 of Suppes p. 25. (Contributed by NM, 7-Aug-1994)

Ref Expression
Assertion elun A B C A B A C

Proof

Step Hyp Ref Expression
1 elex A B C A V
2 elex A B A V
3 elex A C A V
4 2 3 jaoi A B A C A V
5 eleq1 x = A x B A B
6 eleq1 x = A x C A C
7 5 6 orbi12d x = A x B x C A B A C
8 df-un B C = x | x B x C
9 7 8 elab2g A V A B C A B A C
10 1 4 9 pm5.21nii A B C A B A C