Metamath Proof Explorer


Theorem eluni

Description: Membership in class union. (Contributed by NM, 22-May-1994)

Ref Expression
Assertion eluni A B x A x x B

Proof

Step Hyp Ref Expression
1 elex A B A V
2 elex A x A V
3 2 adantr A x x B A V
4 3 exlimiv x A x x B A V
5 eleq1 y = A y x A x
6 5 anbi1d y = A y x x B A x x B
7 6 exbidv y = A x y x x B x A x x B
8 df-uni B = y | x y x x B
9 7 8 elab2g A V A B x A x x B
10 1 4 9 pm5.21nii A B x A x x B