Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The union of a class
eluni
Next ⟩
eluni2
Metamath Proof Explorer
Ascii
Unicode
Theorem
eluni
Description:
Membership in class union.
(Contributed by
NM
, 22-May-1994)
Ref
Expression
Assertion
eluni
⊢
A
∈
⋃
B
↔
∃
x
A
∈
x
∧
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
⋃
B
→
A
∈
V
2
elex
⊢
A
∈
x
→
A
∈
V
3
2
adantr
⊢
A
∈
x
∧
x
∈
B
→
A
∈
V
4
3
exlimiv
⊢
∃
x
A
∈
x
∧
x
∈
B
→
A
∈
V
5
eleq1
⊢
y
=
A
→
y
∈
x
↔
A
∈
x
6
5
anbi1d
⊢
y
=
A
→
y
∈
x
∧
x
∈
B
↔
A
∈
x
∧
x
∈
B
7
6
exbidv
⊢
y
=
A
→
∃
x
y
∈
x
∧
x
∈
B
↔
∃
x
A
∈
x
∧
x
∈
B
8
df-uni
⊢
⋃
B
=
y
|
∃
x
y
∈
x
∧
x
∈
B
9
7
8
elab2g
⊢
A
∈
V
→
A
∈
⋃
B
↔
∃
x
A
∈
x
∧
x
∈
B
10
1
4
9
pm5.21nii
⊢
A
∈
⋃
B
↔
∃
x
A
∈
x
∧
x
∈
B