Metamath Proof Explorer


Theorem eluni2f

Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses eluni2f.1 _ x A
eluni2f.2 _ x B
Assertion eluni2f A B x B A x

Proof

Step Hyp Ref Expression
1 eluni2f.1 _ x A
2 eluni2f.2 _ x B
3 exancom x A x x B x x B A x
4 1 2 elunif A B x A x x B
5 df-rex x B A x x x B A x
6 3 4 5 3bitr4i A B x B A x