Metamath Proof Explorer


Theorem elunif

Description: A version of eluni using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses elunif.1 _ x A
elunif.2 _ x B
Assertion elunif A B x A x x B

Proof

Step Hyp Ref Expression
1 elunif.1 _ x A
2 elunif.2 _ x B
3 eluni A B y A y y B
4 nfcv _ x y
5 1 4 nfel x A y
6 4 2 nfel x y B
7 5 6 nfan x A y y B
8 nfv y A x x B
9 eleq2w y = x A y A x
10 eleq1w y = x y B x B
11 9 10 anbi12d y = x A y y B A x x B
12 7 8 11 cbvexv1 y A y y B x A x x B
13 3 12 bitri A B x A x x B