Metamath Proof Explorer


Theorem elunii

Description: Membership in class union. (Contributed by NM, 24-Mar-1995)

Ref Expression
Assertion elunii A B B C A C

Proof

Step Hyp Ref Expression
1 eleq2 x = B A x A B
2 eleq1 x = B x C B C
3 1 2 anbi12d x = B A x x C A B B C
4 3 spcegv B C A B B C x A x x C
5 4 anabsi7 A B B C x A x x C
6 eluni A C x A x x C
7 5 6 sylibr A B B C A C