Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The union of a class
elunii
Next ⟩
nfunid
Metamath Proof Explorer
Ascii
Unicode
Theorem
elunii
Description:
Membership in class union.
(Contributed by
NM
, 24-Mar-1995)
Ref
Expression
Assertion
elunii
⊢
A
∈
B
∧
B
∈
C
→
A
∈
⋃
C
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢
x
=
B
→
A
∈
x
↔
A
∈
B
2
eleq1
⊢
x
=
B
→
x
∈
C
↔
B
∈
C
3
1
2
anbi12d
⊢
x
=
B
→
A
∈
x
∧
x
∈
C
↔
A
∈
B
∧
B
∈
C
4
3
spcegv
⊢
B
∈
C
→
A
∈
B
∧
B
∈
C
→
∃
x
A
∈
x
∧
x
∈
C
5
4
anabsi7
⊢
A
∈
B
∧
B
∈
C
→
∃
x
A
∈
x
∧
x
∈
C
6
eluni
⊢
A
∈
⋃
C
↔
∃
x
A
∈
x
∧
x
∈
C
7
5
6
sylibr
⊢
A
∈
B
∧
B
∈
C
→
A
∈
⋃
C