Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The union of a class
elunirab
Next ⟩
uniprg
Metamath Proof Explorer
Ascii
Unicode
Theorem
elunirab
Description:
Membership in union of a class abstraction.
(Contributed by
NM
, 4-Oct-2006)
Ref
Expression
Assertion
elunirab
⊢
A
∈
⋃
x
∈
B
|
φ
↔
∃
x
∈
B
A
∈
x
∧
φ
Proof
Step
Hyp
Ref
Expression
1
eluniab
⊢
A
∈
⋃
x
|
x
∈
B
∧
φ
↔
∃
x
A
∈
x
∧
x
∈
B
∧
φ
2
df-rab
⊢
x
∈
B
|
φ
=
x
|
x
∈
B
∧
φ
3
2
unieqi
⊢
⋃
x
∈
B
|
φ
=
⋃
x
|
x
∈
B
∧
φ
4
3
eleq2i
⊢
A
∈
⋃
x
∈
B
|
φ
↔
A
∈
⋃
x
|
x
∈
B
∧
φ
5
df-rex
⊢
∃
x
∈
B
A
∈
x
∧
φ
↔
∃
x
x
∈
B
∧
A
∈
x
∧
φ
6
an12
⊢
x
∈
B
∧
A
∈
x
∧
φ
↔
A
∈
x
∧
x
∈
B
∧
φ
7
6
exbii
⊢
∃
x
x
∈
B
∧
A
∈
x
∧
φ
↔
∃
x
A
∈
x
∧
x
∈
B
∧
φ
8
5
7
bitri
⊢
∃
x
∈
B
A
∈
x
∧
φ
↔
∃
x
A
∈
x
∧
x
∈
B
∧
φ
9
1
4
8
3bitr4i
⊢
A
∈
⋃
x
∈
B
|
φ
↔
∃
x
∈
B
A
∈
x
∧
φ