Metamath Proof Explorer


Theorem elunirab

Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006)

Ref Expression
Assertion elunirab A x B | φ x B A x φ

Proof

Step Hyp Ref Expression
1 eluniab A x | x B φ x A x x B φ
2 df-rab x B | φ = x | x B φ
3 2 unieqi x B | φ = x | x B φ
4 3 eleq2i A x B | φ A x | x B φ
5 df-rex x B A x φ x x B A x φ
6 an12 x B A x φ A x x B φ
7 6 exbii x x B A x φ x A x x B φ
8 5 7 bitri x B A x φ x A x x B φ
9 1 4 8 3bitr4i A x B | φ x B A x φ