Metamath Proof Explorer


Theorem elunirn2OLD

Description: Obsolete version of elfvunirn as of 12-Jan-2025. (Contributed by Thierry Arnoux, 13-Nov-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion elunirn2OLD Fun F B F A B ran F

Proof

Step Hyp Ref Expression
1 elfvdm B F A A dom F
2 fveq2 x = A F x = F A
3 2 eleq2d x = A B F x B F A
4 3 rspcev A dom F B F A x dom F B F x
5 1 4 mpancom B F A x dom F B F x
6 5 adantl Fun F B F A x dom F B F x
7 elunirn Fun F B ran F x dom F B F x
8 7 adantr Fun F B F A B ran F x dom F B F x
9 6 8 mpbird Fun F B F A B ran F