Metamath Proof Explorer


Theorem elunop

Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion elunop T UniOp T : onto x y T x ih T y = x ih y

Proof

Step Hyp Ref Expression
1 elex T UniOp T V
2 fof T : onto T :
3 ax-hilex V
4 fex T : V T V
5 2 3 4 sylancl T : onto T V
6 5 adantr T : onto x y T x ih T y = x ih y T V
7 foeq1 t = T t : onto T : onto
8 fveq1 t = T t x = T x
9 fveq1 t = T t y = T y
10 8 9 oveq12d t = T t x ih t y = T x ih T y
11 10 eqeq1d t = T t x ih t y = x ih y T x ih T y = x ih y
12 11 2ralbidv t = T x y t x ih t y = x ih y x y T x ih T y = x ih y
13 7 12 anbi12d t = T t : onto x y t x ih t y = x ih y T : onto x y T x ih T y = x ih y
14 df-unop UniOp = t | t : onto x y t x ih t y = x ih y
15 13 14 elab2g T V T UniOp T : onto x y T x ih T y = x ih y
16 1 6 15 pm5.21nii T UniOp T : onto x y T x ih T y = x ih y