Metamath Proof Explorer


Theorem elunop2

Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in AkhiezerGlazman p. 73, and its converse. (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion elunop2 T UniOp T LinOp T : onto x norm T x = norm x

Proof

Step Hyp Ref Expression
1 unoplin T UniOp T LinOp
2 elunop T UniOp T : onto x y T x ih T y = x ih y
3 2 simplbi T UniOp T : onto
4 unopnorm T UniOp x norm T x = norm x
5 4 ralrimiva T UniOp x norm T x = norm x
6 1 3 5 3jca T UniOp T LinOp T : onto x norm T x = norm x
7 eleq1 T = if T LinOp T : onto x norm T x = norm x T I T UniOp if T LinOp T : onto x norm T x = norm x T I UniOp
8 eleq1 T = if T LinOp T : onto x norm T x = norm x T I T LinOp if T LinOp T : onto x norm T x = norm x T I LinOp
9 foeq1 T = if T LinOp T : onto x norm T x = norm x T I T : onto if T LinOp T : onto x norm T x = norm x T I : onto
10 2fveq3 x = y norm T x = norm T y
11 fveq2 x = y norm x = norm y
12 10 11 eqeq12d x = y norm T x = norm x norm T y = norm y
13 12 cbvralvw x norm T x = norm x y norm T y = norm y
14 fveq1 T = if T LinOp T : onto x norm T x = norm x T I T y = if T LinOp T : onto x norm T x = norm x T I y
15 14 fveqeq2d T = if T LinOp T : onto x norm T x = norm x T I norm T y = norm y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
16 15 ralbidv T = if T LinOp T : onto x norm T x = norm x T I y norm T y = norm y y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
17 13 16 syl5bb T = if T LinOp T : onto x norm T x = norm x T I x norm T x = norm x y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
18 8 9 17 3anbi123d T = if T LinOp T : onto x norm T x = norm x T I T LinOp T : onto x norm T x = norm x if T LinOp T : onto x norm T x = norm x T I LinOp if T LinOp T : onto x norm T x = norm x T I : onto y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
19 eleq1 I = if T LinOp T : onto x norm T x = norm x T I I LinOp if T LinOp T : onto x norm T x = norm x T I LinOp
20 foeq1 I = if T LinOp T : onto x norm T x = norm x T I I : onto if T LinOp T : onto x norm T x = norm x T I : onto
21 fveq1 I = if T LinOp T : onto x norm T x = norm x T I I y = if T LinOp T : onto x norm T x = norm x T I y
22 21 fveqeq2d I = if T LinOp T : onto x norm T x = norm x T I norm I y = norm y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
23 22 ralbidv I = if T LinOp T : onto x norm T x = norm x T I y norm I y = norm y y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
24 19 20 23 3anbi123d I = if T LinOp T : onto x norm T x = norm x T I I LinOp I : onto y norm I y = norm y if T LinOp T : onto x norm T x = norm x T I LinOp if T LinOp T : onto x norm T x = norm x T I : onto y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
25 idlnop I LinOp
26 f1oi I : 1-1 onto
27 f1ofo I : 1-1 onto I : onto
28 26 27 ax-mp I : onto
29 fvresi y I y = y
30 29 fveq2d y norm I y = norm y
31 30 rgen y norm I y = norm y
32 25 28 31 3pm3.2i I LinOp I : onto y norm I y = norm y
33 18 24 32 elimhyp if T LinOp T : onto x norm T x = norm x T I LinOp if T LinOp T : onto x norm T x = norm x T I : onto y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
34 33 simp1i if T LinOp T : onto x norm T x = norm x T I LinOp
35 33 simp2i if T LinOp T : onto x norm T x = norm x T I : onto
36 33 simp3i y norm if T LinOp T : onto x norm T x = norm x T I y = norm y
37 34 35 36 lnopunii if T LinOp T : onto x norm T x = norm x T I UniOp
38 7 37 dedth T LinOp T : onto x norm T x = norm x T UniOp
39 6 38 impbii T UniOp T LinOp T : onto x norm T x = norm x