Metamath Proof Explorer


Theorem elutop

Description: Open sets in the topology induced by an uniform structure U on X (Contributed by Thierry Arnoux, 30-Nov-2017)

Ref Expression
Assertion elutop U UnifOn X A unifTop U A X x A v U v x A

Proof

Step Hyp Ref Expression
1 utopval U UnifOn X unifTop U = a 𝒫 X | x a v U v x a
2 1 eleq2d U UnifOn X A unifTop U A a 𝒫 X | x a v U v x a
3 sseq2 a = A v x a v x A
4 3 rexbidv a = A v U v x a v U v x A
5 4 raleqbi1dv a = A x a v U v x a x A v U v x A
6 5 elrab A a 𝒫 X | x a v U v x a A 𝒫 X x A v U v x A
7 2 6 bitrdi U UnifOn X A unifTop U A 𝒫 X x A v U v x A
8 elex A 𝒫 X A V
9 8 a1i U UnifOn X A 𝒫 X A V
10 elfvex U UnifOn X X V
11 10 adantr U UnifOn X A X X V
12 simpr U UnifOn X A X A X
13 11 12 ssexd U UnifOn X A X A V
14 13 ex U UnifOn X A X A V
15 elpwg A V A 𝒫 X A X
16 15 a1i U UnifOn X A V A 𝒫 X A X
17 9 14 16 pm5.21ndd U UnifOn X A 𝒫 X A X
18 17 anbi1d U UnifOn X A 𝒫 X x A v U v x A A X x A v U v x A
19 7 18 bitrd U UnifOn X A unifTop U A X x A v U v x A