Metamath Proof Explorer


Theorem eluz2b2

Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012)

Ref Expression
Assertion eluz2b2 N2N1<N

Proof

Step Hyp Ref Expression
1 eluz2b1 N2N1<N
2 1re 1
3 zre NN
4 ltle 1N1<N1N
5 2 3 4 sylancr N1<N1N
6 5 imdistani N1<NN1N
7 elnnz1 NN1N
8 6 7 sylibr N1<NN
9 simpr N1<N1<N
10 8 9 jca N1<NN1<N
11 nnz NN
12 11 anim1i N1<NN1<N
13 10 12 impbii N1<NN1<N
14 1 13 bitri N2N1<N