Metamath Proof Explorer


Theorem eluz2b2

Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012)

Ref Expression
Assertion eluz2b2 N 2 N 1 < N

Proof

Step Hyp Ref Expression
1 eluz2b1 N 2 N 1 < N
2 1re 1
3 zre N N
4 ltle 1 N 1 < N 1 N
5 2 3 4 sylancr N 1 < N 1 N
6 5 imdistani N 1 < N N 1 N
7 elnnz1 N N 1 N
8 6 7 sylibr N 1 < N N
9 simpr N 1 < N 1 < N
10 8 9 jca N 1 < N N 1 < N
11 nnz N N
12 11 anim1i N 1 < N N 1 < N
13 10 12 impbii N 1 < N N 1 < N
14 1 13 bitri N 2 N 1 < N