Metamath Proof Explorer


Theorem eluz2b3

Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012)

Ref Expression
Assertion eluz2b3 N 2 N N 1

Proof

Step Hyp Ref Expression
1 eluz2b2 N 2 N 1 < N
2 nngt1ne1 N 1 < N N 1
3 2 pm5.32i N 1 < N N N 1
4 1 3 bitri N 2 N N 1