Metamath Proof Explorer


Theorem eluz3nn

Description: An integer greater than or equal to 3 is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018) (Proof shortened by AV, 30-Nov-2025)

Ref Expression
Assertion eluz3nn N 3 N

Proof

Step Hyp Ref Expression
1 uzuzle23 N 3 N 2
2 eluz2nn N 2 N
3 1 2 syl N 3 N