Metamath Proof Explorer


Theorem eluz4eluz2

Description: An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023)

Ref Expression
Assertion eluz4eluz2 X 4 X 2

Proof

Step Hyp Ref Expression
1 2z 2
2 2re 2
3 4re 4
4 2lt4 2 < 4
5 2 3 4 ltleii 2 4
6 eluzuzle 2 2 4 X 4 X 2
7 1 5 6 mp2an X 4 X 2