Metamath Proof Explorer


Theorem eluzadd

Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion eluzadd N M K N + K M + K

Proof

Step Hyp Ref Expression
1 eluzel2 N M M
2 fveq2 M = if M M 0 M = if M M 0
3 2 eleq2d M = if M M 0 N M N if M M 0
4 fvoveq1 M = if M M 0 M + K = if M M 0 + K
5 4 eleq2d M = if M M 0 N + K M + K N + K if M M 0 + K
6 3 5 imbi12d M = if M M 0 N M N + K M + K N if M M 0 N + K if M M 0 + K
7 oveq2 K = if K K 0 N + K = N + if K K 0
8 oveq2 K = if K K 0 if M M 0 + K = if M M 0 + if K K 0
9 8 fveq2d K = if K K 0 if M M 0 + K = if M M 0 + if K K 0
10 7 9 eleq12d K = if K K 0 N + K if M M 0 + K N + if K K 0 if M M 0 + if K K 0
11 10 imbi2d K = if K K 0 N if M M 0 N + K if M M 0 + K N if M M 0 N + if K K 0 if M M 0 + if K K 0
12 0z 0
13 12 elimel if M M 0
14 12 elimel if K K 0
15 13 14 eluzaddi N if M M 0 N + if K K 0 if M M 0 + if K K 0
16 6 11 15 dedth2h M K N M N + K M + K
17 16 com12 N M M K N + K M + K
18 1 17 mpand N M K N + K M + K
19 18 imp N M K N + K M + K