Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
eluzadd
Next ⟩
eluzsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
eluzadd
Description:
Membership in a later upper set of integers.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
eluzadd
⊢
N
∈
ℤ
≥
M
∧
K
∈
ℤ
→
N
+
K
∈
ℤ
≥
M
+
K
Proof
Step
Hyp
Ref
Expression
1
eluzel2
⊢
N
∈
ℤ
≥
M
→
M
∈
ℤ
2
fveq2
⊢
M
=
if
M
∈
ℤ
M
0
→
ℤ
≥
M
=
ℤ
≥
if
M
∈
ℤ
M
0
3
2
eleq2d
⊢
M
=
if
M
∈
ℤ
M
0
→
N
∈
ℤ
≥
M
↔
N
∈
ℤ
≥
if
M
∈
ℤ
M
0
4
fvoveq1
⊢
M
=
if
M
∈
ℤ
M
0
→
ℤ
≥
M
+
K
=
ℤ
≥
if
M
∈
ℤ
M
0
+
K
5
4
eleq2d
⊢
M
=
if
M
∈
ℤ
M
0
→
N
+
K
∈
ℤ
≥
M
+
K
↔
N
+
K
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
K
6
3
5
imbi12d
⊢
M
=
if
M
∈
ℤ
M
0
→
N
∈
ℤ
≥
M
→
N
+
K
∈
ℤ
≥
M
+
K
↔
N
∈
ℤ
≥
if
M
∈
ℤ
M
0
→
N
+
K
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
K
7
oveq2
⊢
K
=
if
K
∈
ℤ
K
0
→
N
+
K
=
N
+
if
K
∈
ℤ
K
0
8
oveq2
⊢
K
=
if
K
∈
ℤ
K
0
→
if
M
∈
ℤ
M
0
+
K
=
if
M
∈
ℤ
M
0
+
if
K
∈
ℤ
K
0
9
8
fveq2d
⊢
K
=
if
K
∈
ℤ
K
0
→
ℤ
≥
if
M
∈
ℤ
M
0
+
K
=
ℤ
≥
if
M
∈
ℤ
M
0
+
if
K
∈
ℤ
K
0
10
7
9
eleq12d
⊢
K
=
if
K
∈
ℤ
K
0
→
N
+
K
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
K
↔
N
+
if
K
∈
ℤ
K
0
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
if
K
∈
ℤ
K
0
11
10
imbi2d
⊢
K
=
if
K
∈
ℤ
K
0
→
N
∈
ℤ
≥
if
M
∈
ℤ
M
0
→
N
+
K
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
K
↔
N
∈
ℤ
≥
if
M
∈
ℤ
M
0
→
N
+
if
K
∈
ℤ
K
0
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
if
K
∈
ℤ
K
0
12
0z
⊢
0
∈
ℤ
13
12
elimel
⊢
if
M
∈
ℤ
M
0
∈
ℤ
14
12
elimel
⊢
if
K
∈
ℤ
K
0
∈
ℤ
15
13
14
eluzaddi
⊢
N
∈
ℤ
≥
if
M
∈
ℤ
M
0
→
N
+
if
K
∈
ℤ
K
0
∈
ℤ
≥
if
M
∈
ℤ
M
0
+
if
K
∈
ℤ
K
0
16
6
11
15
dedth2h
⊢
M
∈
ℤ
∧
K
∈
ℤ
→
N
∈
ℤ
≥
M
→
N
+
K
∈
ℤ
≥
M
+
K
17
16
com12
⊢
N
∈
ℤ
≥
M
→
M
∈
ℤ
∧
K
∈
ℤ
→
N
+
K
∈
ℤ
≥
M
+
K
18
1
17
mpand
⊢
N
∈
ℤ
≥
M
→
K
∈
ℤ
→
N
+
K
∈
ℤ
≥
M
+
K
19
18
imp
⊢
N
∈
ℤ
≥
M
∧
K
∈
ℤ
→
N
+
K
∈
ℤ
≥
M
+
K