Metamath Proof Explorer


Theorem eluzadd

Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Assertion eluzadd N M K N + K M + K

Proof

Step Hyp Ref Expression
1 eluzel2 N M M
2 zaddcl M K M + K
3 1 2 sylan N M K M + K
4 eluzelz N M N
5 zaddcl N K N + K
6 4 5 sylan N M K N + K
7 1 zred N M M
8 7 adantr N M K M
9 eluzelre N M N
10 9 adantr N M K N
11 zre K K
12 11 adantl N M K K
13 eluzle N M M N
14 13 adantr N M K M N
15 8 10 12 14 leadd1dd N M K M + K N + K
16 eluz2 N + K M + K M + K N + K M + K N + K
17 3 6 15 16 syl3anbrc N M K N + K M + K