Metamath Proof Explorer


Theorem eluzelz2

Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis eluzelz2.1 Z = M
Assertion eluzelz2 N Z N

Proof

Step Hyp Ref Expression
1 eluzelz2.1 Z = M
2 1 eleq2i N Z N M
3 2 biimpi N Z N M
4 eluzelz N M N
5 3 4 syl N Z N