Metamath Proof Explorer


Theorem eluzp1l

Description: Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005)

Ref Expression
Assertion eluzp1l M N M + 1 M < N

Proof

Step Hyp Ref Expression
1 eluzle N M + 1 M + 1 N
2 1 adantl M N M + 1 M + 1 N
3 eluzelz N M + 1 N
4 zltp1le M N M < N M + 1 N
5 3 4 sylan2 M N M + 1 M < N M + 1 N
6 2 5 mpbird M N M + 1 M < N