Metamath Proof Explorer


Theorem eluzp1m1

Description: Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005)

Ref Expression
Assertion eluzp1m1 M N M + 1 N 1 M

Proof

Step Hyp Ref Expression
1 peano2zm N N 1
2 1 ad2antrl M N M + 1 N N 1
3 zre M M
4 zre N N
5 1re 1
6 leaddsub M 1 N M + 1 N M N 1
7 5 6 mp3an2 M N M + 1 N M N 1
8 3 4 7 syl2an M N M + 1 N M N 1
9 8 biimpa M N M + 1 N M N 1
10 9 anasss M N M + 1 N M N 1
11 2 10 jca M N M + 1 N N 1 M N 1
12 11 ex M N M + 1 N N 1 M N 1
13 peano2z M M + 1
14 eluz1 M + 1 N M + 1 N M + 1 N
15 13 14 syl M N M + 1 N M + 1 N
16 eluz1 M N 1 M N 1 M N 1
17 12 15 16 3imtr4d M N M + 1 N 1 M
18 17 imp M N M + 1 N 1 M