Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
eluzp1m1
Next ⟩
eluzp1l
Metamath Proof Explorer
Ascii
Unicode
Theorem
eluzp1m1
Description:
Membership in the next upper set of integers.
(Contributed by
NM
, 12-Sep-2005)
Ref
Expression
Assertion
eluzp1m1
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
−
1
∈
ℤ
≥
M
Proof
Step
Hyp
Ref
Expression
1
peano2zm
⊢
N
∈
ℤ
→
N
−
1
∈
ℤ
2
1
ad2antrl
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
+
1
≤
N
→
N
−
1
∈
ℤ
3
zre
⊢
M
∈
ℤ
→
M
∈
ℝ
4
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
5
1re
⊢
1
∈
ℝ
6
leaddsub
⊢
M
∈
ℝ
∧
1
∈
ℝ
∧
N
∈
ℝ
→
M
+
1
≤
N
↔
M
≤
N
−
1
7
5
6
mp3an2
⊢
M
∈
ℝ
∧
N
∈
ℝ
→
M
+
1
≤
N
↔
M
≤
N
−
1
8
3
4
7
syl2an
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
+
1
≤
N
↔
M
≤
N
−
1
9
8
biimpa
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
+
1
≤
N
→
M
≤
N
−
1
10
9
anasss
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
+
1
≤
N
→
M
≤
N
−
1
11
2
10
jca
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
+
1
≤
N
→
N
−
1
∈
ℤ
∧
M
≤
N
−
1
12
11
ex
⊢
M
∈
ℤ
→
N
∈
ℤ
∧
M
+
1
≤
N
→
N
−
1
∈
ℤ
∧
M
≤
N
−
1
13
peano2z
⊢
M
∈
ℤ
→
M
+
1
∈
ℤ
14
eluz1
⊢
M
+
1
∈
ℤ
→
N
∈
ℤ
≥
M
+
1
↔
N
∈
ℤ
∧
M
+
1
≤
N
15
13
14
syl
⊢
M
∈
ℤ
→
N
∈
ℤ
≥
M
+
1
↔
N
∈
ℤ
∧
M
+
1
≤
N
16
eluz1
⊢
M
∈
ℤ
→
N
−
1
∈
ℤ
≥
M
↔
N
−
1
∈
ℤ
∧
M
≤
N
−
1
17
12
15
16
3imtr4d
⊢
M
∈
ℤ
→
N
∈
ℤ
≥
M
+
1
→
N
−
1
∈
ℤ
≥
M
18
17
imp
⊢
M
∈
ℤ
∧
N
∈
ℤ
≥
M
+
1
→
N
−
1
∈
ℤ
≥
M