Metamath Proof Explorer


Theorem eluzp1p1

Description: Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005)

Ref Expression
Assertion eluzp1p1 N M N + 1 M + 1

Proof

Step Hyp Ref Expression
1 peano2z M M + 1
2 1 3ad2ant1 M N M N M + 1
3 peano2z N N + 1
4 3 3ad2ant2 M N M N N + 1
5 zre M M
6 zre N N
7 1re 1
8 leadd1 M N 1 M N M + 1 N + 1
9 7 8 mp3an3 M N M N M + 1 N + 1
10 5 6 9 syl2an M N M N M + 1 N + 1
11 10 biimp3a M N M N M + 1 N + 1
12 2 4 11 3jca M N M N M + 1 N + 1 M + 1 N + 1
13 eluz2 N M M N M N
14 eluz2 N + 1 M + 1 M + 1 N + 1 M + 1 N + 1
15 12 13 14 3imtr4i N M N + 1 M + 1