Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
eluzp1p1
Next ⟩
eluzaddi
Metamath Proof Explorer
Ascii
Unicode
Theorem
eluzp1p1
Description:
Membership in the next upper set of integers.
(Contributed by
NM
, 5-Oct-2005)
Ref
Expression
Assertion
eluzp1p1
⊢
N
∈
ℤ
≥
M
→
N
+
1
∈
ℤ
≥
M
+
1
Proof
Step
Hyp
Ref
Expression
1
peano2z
⊢
M
∈
ℤ
→
M
+
1
∈
ℤ
2
1
3ad2ant1
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
M
+
1
∈
ℤ
3
peano2z
⊢
N
∈
ℤ
→
N
+
1
∈
ℤ
4
3
3ad2ant2
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
N
+
1
∈
ℤ
5
zre
⊢
M
∈
ℤ
→
M
∈
ℝ
6
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
7
1re
⊢
1
∈
ℝ
8
leadd1
⊢
M
∈
ℝ
∧
N
∈
ℝ
∧
1
∈
ℝ
→
M
≤
N
↔
M
+
1
≤
N
+
1
9
7
8
mp3an3
⊢
M
∈
ℝ
∧
N
∈
ℝ
→
M
≤
N
↔
M
+
1
≤
N
+
1
10
5
6
9
syl2an
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
M
+
1
≤
N
+
1
11
10
biimp3a
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
M
+
1
≤
N
+
1
12
2
4
11
3jca
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
M
+
1
∈
ℤ
∧
N
+
1
∈
ℤ
∧
M
+
1
≤
N
+
1
13
eluz2
⊢
N
∈
ℤ
≥
M
↔
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
14
eluz2
⊢
N
+
1
∈
ℤ
≥
M
+
1
↔
M
+
1
∈
ℤ
∧
N
+
1
∈
ℤ
∧
M
+
1
≤
N
+
1
15
12
13
14
3imtr4i
⊢
N
∈
ℤ
≥
M
→
N
+
1
∈
ℤ
≥
M
+
1