Metamath Proof Explorer


Theorem eluzsub

Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion eluzsub M K N M + K N K M

Proof

Step Hyp Ref Expression
1 fvoveq1 M = if M M 0 M + K = if M M 0 + K
2 1 eleq2d M = if M M 0 N M + K N if M M 0 + K
3 fveq2 M = if M M 0 M = if M M 0
4 3 eleq2d M = if M M 0 N K M N K if M M 0
5 2 4 imbi12d M = if M M 0 N M + K N K M N if M M 0 + K N K if M M 0
6 oveq2 K = if K K 0 if M M 0 + K = if M M 0 + if K K 0
7 6 fveq2d K = if K K 0 if M M 0 + K = if M M 0 + if K K 0
8 7 eleq2d K = if K K 0 N if M M 0 + K N if M M 0 + if K K 0
9 oveq2 K = if K K 0 N K = N if K K 0
10 9 eleq1d K = if K K 0 N K if M M 0 N if K K 0 if M M 0
11 8 10 imbi12d K = if K K 0 N if M M 0 + K N K if M M 0 N if M M 0 + if K K 0 N if K K 0 if M M 0
12 0z 0
13 12 elimel if M M 0
14 12 elimel if K K 0
15 13 14 eluzsubi N if M M 0 + if K K 0 N if K K 0 if M M 0
16 5 11 15 dedth2h M K N M + K N K M
17 16 3impia M K N M + K N K M