Metamath Proof Explorer


Theorem eluzsub

Description: Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Assertion eluzsub M K N M + K N K M

Proof

Step Hyp Ref Expression
1 simp1 M K N M + K M
2 eluzelz N M + K N
3 2 3ad2ant3 M K N M + K N
4 simp2 M K N M + K K
5 3 4 zsubcld M K N M + K N K
6 eluzle N M + K M + K N
7 6 3ad2ant3 M K N M + K M + K N
8 zre M M
9 zre K K
10 eluzelre N M + K N
11 leaddsub M K N M + K N M N K
12 8 9 10 11 syl3an M K N M + K M + K N M N K
13 7 12 mpbid M K N M + K M N K
14 eluz2 N K M M N K M N K
15 1 5 13 14 syl3anbrc M K N M + K N K M