Metamath Proof Explorer


Theorem eluzsubi

Description: Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007)

Ref Expression
Hypotheses eluzaddi.1 M
eluzaddi.2 K
Assertion eluzsubi N M + K N K M

Proof

Step Hyp Ref Expression
1 eluzaddi.1 M
2 eluzaddi.2 K
3 eluzelz N M + K N
4 zsubcl N K N K
5 3 2 4 sylancl N M + K N K
6 zaddcl M K M + K
7 1 2 6 mp2an M + K
8 7 eluz1i N M + K N M + K N
9 1 zrei M
10 2 zrei K
11 zre N N
12 leaddsub M K N M + K N M N K
13 9 10 11 12 mp3an12i N M + K N M N K
14 13 biimpa N M + K N M N K
15 8 14 sylbi N M + K M N K
16 1 eluz1i N K M N K M N K
17 5 15 16 sylanbrc N M + K N K M