Metamath Proof Explorer


Theorem eluzsubi

Description: Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007) (Proof shortened by SN, 7-Feb-2025)

Ref Expression
Hypotheses eluzsubi.1 M
eluzsubi.2 K
Assertion eluzsubi N M + K N K M

Proof

Step Hyp Ref Expression
1 eluzsubi.1 M
2 eluzsubi.2 K
3 eluzsub M K N M + K N K M
4 1 2 3 mp3an12 N M + K N K M