Metamath Proof Explorer


Theorem eluzuzle

Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018)

Ref Expression
Assertion eluzuzle B B A C A C B

Proof

Step Hyp Ref Expression
1 eluz2 C A A C A C
2 simpll B B A A C A C B
3 simpr2 B B A A C A C C
4 zre B B
5 4 ad2antrr B B A A C A C B
6 zre A A
7 6 3ad2ant1 A C A C A
8 7 adantl B B A A C A C A
9 zre C C
10 9 3ad2ant2 A C A C C
11 10 adantl B B A A C A C C
12 simplr B B A A C A C B A
13 simpr3 B B A A C A C A C
14 5 8 11 12 13 letrd B B A A C A C B C
15 eluz2 C B B C B C
16 2 3 14 15 syl3anbrc B B A A C A C C B
17 16 ex B B A A C A C C B
18 1 17 syl5bi B B A C A C B