Metamath Proof Explorer


Theorem elvv

Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elvv A V × V x y A = x y

Proof

Step Hyp Ref Expression
1 elxp A V × V x y A = x y x V y V
2 vex x V
3 vex y V
4 2 3 pm3.2i x V y V
5 4 biantru A = x y A = x y x V y V
6 5 2exbii x y A = x y x y A = x y x V y V
7 1 6 bitr4i A V × V x y A = x y