Metamath Proof Explorer


Theorem elvvuni

Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion elvvuni A V × V A A

Proof

Step Hyp Ref Expression
1 elvv A V × V x y A = x y
2 vex x V
3 vex y V
4 2 3 uniop x y = x y
5 2 3 opi2 x y x y
6 4 5 eqeltri x y x y
7 unieq A = x y A = x y
8 id A = x y A = x y
9 7 8 eleq12d A = x y A A x y x y
10 6 9 mpbiri A = x y A A
11 10 exlimivv x y A = x y A A
12 1 11 sylbi A V × V A A