Metamath Proof Explorer


Theorem elwina

Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion elwina A Inacc 𝑤 A cf A = A x A y A x y

Proof

Step Hyp Ref Expression
1 elex A Inacc 𝑤 A V
2 fvex cf A V
3 eleq1 cf A = A cf A V A V
4 2 3 mpbii cf A = A A V
5 4 3ad2ant2 A cf A = A x A y A x y A V
6 neeq1 z = A z A
7 fveq2 z = A cf z = cf A
8 eqeq12 cf z = cf A z = A cf z = z cf A = A
9 7 8 mpancom z = A cf z = z cf A = A
10 rexeq z = A y z x y y A x y
11 10 raleqbi1dv z = A x z y z x y x A y A x y
12 6 9 11 3anbi123d z = A z cf z = z x z y z x y A cf A = A x A y A x y
13 df-wina Inacc 𝑤 = z | z cf z = z x z y z x y
14 12 13 elab2g A V A Inacc 𝑤 A cf A = A x A y A x y
15 1 5 14 pm5.21nii A Inacc 𝑤 A cf A = A x A y A x y