Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weakly and strongly inaccessible cardinals
elwina
Next ⟩
elina
Metamath Proof Explorer
Ascii
Unicode
Theorem
elwina
Description:
Conditions of weak inaccessibility.
(Contributed by
Mario Carneiro
, 22-Jun-2013)
Ref
Expression
Assertion
elwina
⊢
A
∈
Inacc
𝑤
↔
A
≠
∅
∧
cf
⁡
A
=
A
∧
∀
x
∈
A
∃
y
∈
A
x
≺
y
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
Inacc
𝑤
→
A
∈
V
2
fvex
⊢
cf
⁡
A
∈
V
3
eleq1
⊢
cf
⁡
A
=
A
→
cf
⁡
A
∈
V
↔
A
∈
V
4
2
3
mpbii
⊢
cf
⁡
A
=
A
→
A
∈
V
5
4
3ad2ant2
⊢
A
≠
∅
∧
cf
⁡
A
=
A
∧
∀
x
∈
A
∃
y
∈
A
x
≺
y
→
A
∈
V
6
neeq1
⊢
z
=
A
→
z
≠
∅
↔
A
≠
∅
7
fveq2
⊢
z
=
A
→
cf
⁡
z
=
cf
⁡
A
8
eqeq12
⊢
cf
⁡
z
=
cf
⁡
A
∧
z
=
A
→
cf
⁡
z
=
z
↔
cf
⁡
A
=
A
9
7
8
mpancom
⊢
z
=
A
→
cf
⁡
z
=
z
↔
cf
⁡
A
=
A
10
rexeq
⊢
z
=
A
→
∃
y
∈
z
x
≺
y
↔
∃
y
∈
A
x
≺
y
11
10
raleqbi1dv
⊢
z
=
A
→
∀
x
∈
z
∃
y
∈
z
x
≺
y
↔
∀
x
∈
A
∃
y
∈
A
x
≺
y
12
6
9
11
3anbi123d
⊢
z
=
A
→
z
≠
∅
∧
cf
⁡
z
=
z
∧
∀
x
∈
z
∃
y
∈
z
x
≺
y
↔
A
≠
∅
∧
cf
⁡
A
=
A
∧
∀
x
∈
A
∃
y
∈
A
x
≺
y
13
df-wina
⊢
Inacc
𝑤
=
z
|
z
≠
∅
∧
cf
⁡
z
=
z
∧
∀
x
∈
z
∃
y
∈
z
x
≺
y
14
12
13
elab2g
⊢
A
∈
V
→
A
∈
Inacc
𝑤
↔
A
≠
∅
∧
cf
⁡
A
=
A
∧
∀
x
∈
A
∃
y
∈
A
x
≺
y
15
1
5
14
pm5.21nii
⊢
A
∈
Inacc
𝑤
↔
A
≠
∅
∧
cf
⁡
A
=
A
∧
∀
x
∈
A
∃
y
∈
A
x
≺
y