Metamath Proof Explorer


Theorem elwspths2on

Description: A simple path of length 2 between two vertices (in a graph) as length 3 string. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 12-May-2021) (Proof shortened by AV, 16-Mar-2022)

Ref Expression
Hypothesis elwwlks2on.v V = Vtx G
Assertion elwspths2on G UPGraph A V C V W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C

Proof

Step Hyp Ref Expression
1 elwwlks2on.v V = Vtx G
2 wspthnon W A 2 WSPathsNOn G C W A 2 WWalksNOn G C f f A SPathsOn G C W
3 2 biimpi W A 2 WSPathsNOn G C W A 2 WWalksNOn G C f f A SPathsOn G C W
4 1 elwwlks2on G UPGraph A V C V W A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2
5 simpl W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩
6 eleq1 W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
7 6 biimpa W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
8 5 7 jca W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
9 8 ex W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
10 9 adantr W = ⟨“ AbC ”⟩ f f Walks G W f = 2 W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
11 10 com12 W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ f f Walks G W f = 2 W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
12 11 reximdv W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2 b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
13 12 a1i13 G UPGraph A V C V W A 2 WSPathsNOn G C f f A SPathsOn G C W b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2 b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
14 13 com24 G UPGraph A V C V b V W = ⟨“ AbC ”⟩ f f Walks G W f = 2 f f A SPathsOn G C W W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
15 4 14 sylbid G UPGraph A V C V W A 2 WWalksNOn G C f f A SPathsOn G C W W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
16 15 impd G UPGraph A V C V W A 2 WWalksNOn G C f f A SPathsOn G C W W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
17 16 com23 G UPGraph A V C V W A 2 WSPathsNOn G C W A 2 WWalksNOn G C f f A SPathsOn G C W b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
18 3 17 mpdi G UPGraph A V C V W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
19 6 biimpar W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C W A 2 WSPathsNOn G C
20 19 a1i G UPGraph A V C V b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C W A 2 WSPathsNOn G C
21 20 rexlimdva G UPGraph A V C V b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C W A 2 WSPathsNOn G C
22 18 21 impbid G UPGraph A V C V W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C