Metamath Proof Explorer


Theorem elwspths2onw

Description: A simple path of length 2 between two vertices (in a simple pseudograph) as length 3 string. This theorem avoids the Axiom of Choice for its proof, at the cost of requiring a simple graph; the more general version is elwspths2on . (Contributed by Ender Ting, 29-Jan-2026)

Ref Expression
Hypothesis elwwlks2on.v V = Vtx G
Assertion elwspths2onw G USHGraph A V C V W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C

Proof

Step Hyp Ref Expression
1 elwwlks2on.v V = Vtx G
2 wspthnon W A 2 WSPathsNOn G C W A 2 WWalksNOn G C b b A SPathsOn G C W
3 2 biimpi W A 2 WSPathsNOn G C W A 2 WWalksNOn G C b b A SPathsOn G C W
4 1 elwwlks2ons3 W A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C
5 4 a1i G USHGraph A V C V W A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C
6 simpl W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩
7 eleq1 W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
8 7 biimpa W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
9 6 8 jca W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
10 9 ex W = ⟨“ AbC ”⟩ W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
11 10 adantr W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
12 11 com12 W A 2 WSPathsNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
13 12 reximdv W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
14 13 a1i13 G USHGraph A V C V W A 2 WSPathsNOn G C b b A SPathsOn G C W b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
15 14 com24 G USHGraph A V C V b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WWalksNOn G C b b A SPathsOn G C W W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
16 5 15 sylbid G USHGraph A V C V W A 2 WWalksNOn G C b b A SPathsOn G C W W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
17 16 impd G USHGraph A V C V W A 2 WWalksNOn G C b b A SPathsOn G C W W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
18 17 com23 G USHGraph A V C V W A 2 WSPathsNOn G C W A 2 WWalksNOn G C b b A SPathsOn G C W b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
19 3 18 mpdi G USHGraph A V C V W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C
20 7 biimpar W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C W A 2 WSPathsNOn G C
21 20 a1i G USHGraph A V C V b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C W A 2 WSPathsNOn G C
22 21 rexlimdva G USHGraph A V C V b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C W A 2 WSPathsNOn G C
23 19 22 impbid G USHGraph A V C V W A 2 WSPathsNOn G C b V W = ⟨“ AbC ”⟩ ⟨“ AbC ”⟩ A 2 WSPathsNOn G C