Step |
Hyp |
Ref |
Expression |
1 |
|
elwwlks2.v |
|
2 |
1
|
wwlksnwwlksnon |
|
3 |
2
|
a1i |
|
4 |
1
|
elwwlks2on |
|
5 |
4
|
3expb |
|
6 |
5
|
2rexbidva |
|
7 |
|
rexcom |
|
8 |
|
s3cli |
|
9 |
8
|
a1i |
|
10 |
|
simplr |
|
11 |
|
simpr |
|
12 |
10 11
|
eqtr4d |
|
13 |
12
|
breq2d |
|
14 |
13
|
biimpd |
|
15 |
14
|
com12 |
|
16 |
15
|
adantr |
|
17 |
16
|
impcom |
|
18 |
|
simprr |
|
19 |
|
vex |
|
20 |
|
s3fv0 |
|
21 |
20
|
eqcomd |
|
22 |
19 21
|
mp1i |
|
23 |
|
fveq1 |
|
24 |
22 23
|
eqtr4d |
|
25 |
|
vex |
|
26 |
|
s3fv1 |
|
27 |
26
|
eqcomd |
|
28 |
25 27
|
mp1i |
|
29 |
|
fveq1 |
|
30 |
28 29
|
eqtr4d |
|
31 |
|
vex |
|
32 |
|
s3fv2 |
|
33 |
32
|
eqcomd |
|
34 |
31 33
|
mp1i |
|
35 |
|
fveq1 |
|
36 |
34 35
|
eqtr4d |
|
37 |
24 30 36
|
3jca |
|
38 |
37
|
adantl |
|
39 |
38
|
adantr |
|
40 |
17 18 39
|
3jca |
|
41 |
40
|
ex |
|
42 |
9 41
|
spcimedv |
|
43 |
|
wlklenvp1 |
|
44 |
|
simpl |
|
45 |
|
oveq1 |
|
46 |
45
|
adantl |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
adantl |
|
49 |
|
2p1e3 |
|
50 |
48 49
|
eqtrdi |
|
51 |
50
|
exp32 |
|
52 |
43 51
|
mpd |
|
53 |
52
|
adantr |
|
54 |
53
|
imp |
|
55 |
|
eqcom |
|
56 |
55
|
biimpi |
|
57 |
|
eqcom |
|
58 |
57
|
biimpi |
|
59 |
|
eqcom |
|
60 |
59
|
biimpi |
|
61 |
56 58 60
|
3anim123i |
|
62 |
54 61
|
anim12i |
|
63 |
1
|
wlkpwrd |
|
64 |
|
simpr |
|
65 |
64
|
anim1i |
|
66 |
|
3anass |
|
67 |
65 66
|
sylibr |
|
68 |
67
|
adantr |
|
69 |
63 68
|
anim12i |
|
70 |
69
|
ad2antrr |
|
71 |
|
eqwrds3 |
|
72 |
70 71
|
syl |
|
73 |
62 72
|
mpbird |
|
74 |
|
simprr |
|
75 |
74
|
ad2antrr |
|
76 |
73 75
|
eqtr4d |
|
77 |
76
|
breq2d |
|
78 |
77
|
biimpd |
|
79 |
|
simplr |
|
80 |
78 79
|
jctird |
|
81 |
80
|
exp41 |
|
82 |
81
|
com25 |
|
83 |
82
|
pm2.43i |
|
84 |
83
|
3imp |
|
85 |
84
|
com12 |
|
86 |
85
|
exlimdv |
|
87 |
42 86
|
impbid |
|
88 |
87
|
exbidv |
|
89 |
88
|
pm5.32da |
|
90 |
89
|
2rexbidva |
|
91 |
7 90
|
syl5bb |
|
92 |
91
|
rexbidva |
|
93 |
3 6 92
|
3bitrd |
|