Metamath Proof Explorer


Theorem elwwlks2s3

Description: A walk of length 2 as word is a length 3 string. (Contributed by AV, 18-May-2021)

Ref Expression
Hypothesis elwwlks2s3.v V = Vtx G
Assertion elwwlks2s3 W 2 WWalksN G a V b V c V W = ⟨“ abc ”⟩

Proof

Step Hyp Ref Expression
1 elwwlks2s3.v V = Vtx G
2 wwlknbp1 W 2 WWalksN G 2 0 W Word Vtx G W = 2 + 1
3 1 wrdeqi Word V = Word Vtx G
4 3 eleq2i W Word V W Word Vtx G
5 df-3 3 = 2 + 1
6 5 eqeq2i W = 3 W = 2 + 1
7 4 6 anbi12i W Word V W = 3 W Word Vtx G W = 2 + 1
8 wrdl3s3 W Word V W = 3 a V b V c V W = ⟨“ abc ”⟩
9 7 8 sylbb1 W Word Vtx G W = 2 + 1 a V b V c V W = ⟨“ abc ”⟩
10 9 3adant1 2 0 W Word Vtx G W = 2 + 1 a V b V c V W = ⟨“ abc ”⟩
11 2 10 syl W 2 WWalksN G a V b V c V W = ⟨“ abc ”⟩