Database
GRAPH THEORY
Walks, paths and cycles
Walks/paths of length 2 (as length 3 strings)
elwwlks2s3
Next ⟩
midwwlks2s3
Metamath Proof Explorer
Ascii
Unicode
Theorem
elwwlks2s3
Description:
A walk of length 2 as word is a length 3 string.
(Contributed by
AV
, 18-May-2021)
Ref
Expression
Hypothesis
elwwlks2s3.v
⊢
V
=
Vtx
⁡
G
Assertion
elwwlks2s3
⊢
W
∈
2
WWalksN
G
→
∃
a
∈
V
∃
b
∈
V
∃
c
∈
V
W
=
〈“
a
b
c
”〉
Proof
Step
Hyp
Ref
Expression
1
elwwlks2s3.v
⊢
V
=
Vtx
⁡
G
2
wwlknbp1
⊢
W
∈
2
WWalksN
G
→
2
∈
ℕ
0
∧
W
∈
Word
Vtx
⁡
G
∧
W
=
2
+
1
3
1
wrdeqi
⊢
Word
V
=
Word
Vtx
⁡
G
4
3
eleq2i
⊢
W
∈
Word
V
↔
W
∈
Word
Vtx
⁡
G
5
df-3
⊢
3
=
2
+
1
6
5
eqeq2i
⊢
W
=
3
↔
W
=
2
+
1
7
4
6
anbi12i
⊢
W
∈
Word
V
∧
W
=
3
↔
W
∈
Word
Vtx
⁡
G
∧
W
=
2
+
1
8
wrdl3s3
⊢
W
∈
Word
V
∧
W
=
3
↔
∃
a
∈
V
∃
b
∈
V
∃
c
∈
V
W
=
〈“
a
b
c
”〉
9
7
8
sylbb1
⊢
W
∈
Word
Vtx
⁡
G
∧
W
=
2
+
1
→
∃
a
∈
V
∃
b
∈
V
∃
c
∈
V
W
=
〈“
a
b
c
”〉
10
9
3adant1
⊢
2
∈
ℕ
0
∧
W
∈
Word
Vtx
⁡
G
∧
W
=
2
+
1
→
∃
a
∈
V
∃
b
∈
V
∃
c
∈
V
W
=
〈“
a
b
c
”〉
11
2
10
syl
⊢
W
∈
2
WWalksN
G
→
∃
a
∈
V
∃
b
∈
V
∃
c
∈
V
W
=
〈“
a
b
c
”〉