Metamath Proof Explorer


Theorem elxp2

Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004) (Proof shortened by JJ, 13-Aug-2021)

Ref Expression
Assertion elxp2 A B × C x B y C A = x y

Proof

Step Hyp Ref Expression
1 ancom A = x y x B y C x B y C A = x y
2 1 2exbii x y A = x y x B y C x y x B y C A = x y
3 elxp A B × C x y A = x y x B y C
4 r2ex x B y C A = x y x y x B y C A = x y
5 2 3 4 3bitr4i A B × C x B y C A = x y