Description: Membership in a Cartesian product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 when the double intersection does not create class existence problems (caused by int0 ). (Contributed by NM, 1-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp5 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | |
|
| 2 | sneq | |
|
| 3 | 2 | rneqd | |
| 4 | 3 | unieqd | |
| 5 | vex | |
|
| 6 | vex | |
|
| 7 | 5 6 | op2nda | |
| 8 | 4 7 | eqtr2di | |
| 9 | 8 | pm4.71ri | |
| 10 | 9 | anbi1i | |
| 11 | anass | |
|
| 12 | 10 11 | bitri | |
| 13 | 12 | exbii | |
| 14 | snex | |
|
| 15 | 14 | rnex | |
| 16 | 15 | uniex | |
| 17 | opeq2 | |
|
| 18 | 17 | eqeq2d | |
| 19 | eleq1 | |
|
| 20 | 19 | anbi2d | |
| 21 | 18 20 | anbi12d | |
| 22 | 16 21 | ceqsexv | |
| 23 | 13 22 | bitri | |
| 24 | inteq | |
|
| 25 | 24 | inteqd | |
| 26 | 5 16 | op1stb | |
| 27 | 25 26 | eqtr2di | |
| 28 | 27 | pm4.71ri | |
| 29 | 28 | anbi1i | |
| 30 | anass | |
|
| 31 | 23 29 30 | 3bitri | |
| 32 | 31 | exbii | |
| 33 | eqvisset | |
|
| 34 | 33 | adantr | |
| 35 | 34 | exlimiv | |
| 36 | elex | |
|
| 37 | 36 | ad2antrl | |
| 38 | opeq1 | |
|
| 39 | 38 | eqeq2d | |
| 40 | eleq1 | |
|
| 41 | 40 | anbi1d | |
| 42 | 39 41 | anbi12d | |
| 43 | 42 | ceqsexgv | |
| 44 | 35 37 43 | pm5.21nii | |
| 45 | 1 32 44 | 3bitri | |