Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
elxr
Next ⟩
xrnemnf
Metamath Proof Explorer
Ascii
Unicode
Theorem
elxr
Description:
Membership in the set of extended reals.
(Contributed by
NM
, 14-Oct-2005)
Ref
Expression
Assertion
elxr
⊢
A
∈
ℝ
*
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
Proof
Step
Hyp
Ref
Expression
1
df-xr
⊢
ℝ
*
=
ℝ
∪
+∞
−∞
2
1
eleq2i
⊢
A
∈
ℝ
*
↔
A
∈
ℝ
∪
+∞
−∞
3
elun
⊢
A
∈
ℝ
∪
+∞
−∞
↔
A
∈
ℝ
∨
A
∈
+∞
−∞
4
pnfex
⊢
+∞
∈
V
5
mnfxr
⊢
−∞
∈
ℝ
*
6
5
elexi
⊢
−∞
∈
V
7
4
6
elpr2
⊢
A
∈
+∞
−∞
↔
A
=
+∞
∨
A
=
−∞
8
7
orbi2i
⊢
A
∈
ℝ
∨
A
∈
+∞
−∞
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
9
3orass
⊢
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
10
8
9
bitr4i
⊢
A
∈
ℝ
∨
A
∈
+∞
−∞
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
11
2
3
10
3bitri
⊢
A
∈
ℝ
*
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞