Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
elz
Next ⟩
nnnegz
Metamath Proof Explorer
Ascii
Unicode
Theorem
elz
Description:
Membership in the set of integers.
(Contributed by
NM
, 8-Jan-2002)
Ref
Expression
Assertion
elz
⊢
N
∈
ℤ
↔
N
∈
ℝ
∧
N
=
0
∨
N
∈
ℕ
∨
−
N
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
eqeq1
⊢
x
=
N
→
x
=
0
↔
N
=
0
2
eleq1
⊢
x
=
N
→
x
∈
ℕ
↔
N
∈
ℕ
3
negeq
⊢
x
=
N
→
−
x
=
−
N
4
3
eleq1d
⊢
x
=
N
→
−
x
∈
ℕ
↔
−
N
∈
ℕ
5
1
2
4
3orbi123d
⊢
x
=
N
→
x
=
0
∨
x
∈
ℕ
∨
−
x
∈
ℕ
↔
N
=
0
∨
N
∈
ℕ
∨
−
N
∈
ℕ
6
df-z
⊢
ℤ
=
x
∈
ℝ
|
x
=
0
∨
x
∈
ℕ
∨
−
x
∈
ℕ
7
5
6
elrab2
⊢
N
∈
ℤ
↔
N
∈
ℝ
∧
N
=
0
∨
N
∈
ℕ
∨
−
N
∈
ℕ