| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0 |
|
| 2 |
|
nn0p1nn |
|
| 3 |
2
|
adantl |
|
| 4 |
|
1nn |
|
| 5 |
4
|
a1i |
|
| 6 |
|
recn |
|
| 7 |
6
|
adantr |
|
| 8 |
|
ax-1cn |
|
| 9 |
|
pncan |
|
| 10 |
7 8 9
|
sylancl |
|
| 11 |
10
|
eqcomd |
|
| 12 |
|
rspceov |
|
| 13 |
3 5 11 12
|
syl3anc |
|
| 14 |
4
|
a1i |
|
| 15 |
6
|
adantr |
|
| 16 |
|
negsub |
|
| 17 |
8 15 16
|
sylancr |
|
| 18 |
|
simpr |
|
| 19 |
|
nnnn0addcl |
|
| 20 |
4 18 19
|
sylancr |
|
| 21 |
17 20
|
eqeltrrd |
|
| 22 |
|
nncan |
|
| 23 |
8 15 22
|
sylancr |
|
| 24 |
23
|
eqcomd |
|
| 25 |
|
rspceov |
|
| 26 |
14 21 24 25
|
syl3anc |
|
| 27 |
13 26
|
jaodan |
|
| 28 |
|
nnre |
|
| 29 |
|
nnre |
|
| 30 |
|
resubcl |
|
| 31 |
28 29 30
|
syl2an |
|
| 32 |
|
letric |
|
| 33 |
29 28 32
|
syl2anr |
|
| 34 |
|
nnnn0 |
|
| 35 |
|
nnnn0 |
|
| 36 |
|
nn0sub |
|
| 37 |
34 35 36
|
syl2anr |
|
| 38 |
|
nn0sub |
|
| 39 |
35 34 38
|
syl2an |
|
| 40 |
|
nncn |
|
| 41 |
|
nncn |
|
| 42 |
|
negsubdi2 |
|
| 43 |
40 41 42
|
syl2an |
|
| 44 |
43
|
eleq1d |
|
| 45 |
39 44
|
bitr4d |
|
| 46 |
37 45
|
orbi12d |
|
| 47 |
33 46
|
mpbid |
|
| 48 |
31 47
|
jca |
|
| 49 |
|
eleq1 |
|
| 50 |
|
eleq1 |
|
| 51 |
|
negeq |
|
| 52 |
51
|
eleq1d |
|
| 53 |
50 52
|
orbi12d |
|
| 54 |
49 53
|
anbi12d |
|
| 55 |
48 54
|
syl5ibrcom |
|
| 56 |
55
|
rexlimivv |
|
| 57 |
27 56
|
impbii |
|
| 58 |
1 57
|
bitri |
|