Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0 |
|
2 |
|
nn0p1nn |
|
3 |
2
|
adantl |
|
4 |
|
1nn |
|
5 |
4
|
a1i |
|
6 |
|
recn |
|
7 |
6
|
adantr |
|
8 |
|
ax-1cn |
|
9 |
|
pncan |
|
10 |
7 8 9
|
sylancl |
|
11 |
10
|
eqcomd |
|
12 |
|
rspceov |
|
13 |
3 5 11 12
|
syl3anc |
|
14 |
4
|
a1i |
|
15 |
6
|
adantr |
|
16 |
|
negsub |
|
17 |
8 15 16
|
sylancr |
|
18 |
|
simpr |
|
19 |
|
nnnn0addcl |
|
20 |
4 18 19
|
sylancr |
|
21 |
17 20
|
eqeltrrd |
|
22 |
|
nncan |
|
23 |
8 15 22
|
sylancr |
|
24 |
23
|
eqcomd |
|
25 |
|
rspceov |
|
26 |
14 21 24 25
|
syl3anc |
|
27 |
13 26
|
jaodan |
|
28 |
|
nnre |
|
29 |
|
nnre |
|
30 |
|
resubcl |
|
31 |
28 29 30
|
syl2an |
|
32 |
|
letric |
|
33 |
29 28 32
|
syl2anr |
|
34 |
|
nnnn0 |
|
35 |
|
nnnn0 |
|
36 |
|
nn0sub |
|
37 |
34 35 36
|
syl2anr |
|
38 |
|
nn0sub |
|
39 |
35 34 38
|
syl2an |
|
40 |
|
nncn |
|
41 |
|
nncn |
|
42 |
|
negsubdi2 |
|
43 |
40 41 42
|
syl2an |
|
44 |
43
|
eleq1d |
|
45 |
39 44
|
bitr4d |
|
46 |
37 45
|
orbi12d |
|
47 |
33 46
|
mpbid |
|
48 |
31 47
|
jca |
|
49 |
|
eleq1 |
|
50 |
|
eleq1 |
|
51 |
|
negeq |
|
52 |
51
|
eleq1d |
|
53 |
50 52
|
orbi12d |
|
54 |
49 53
|
anbi12d |
|
55 |
48 54
|
syl5ibrcom |
|
56 |
55
|
rexlimivv |
|
57 |
27 56
|
impbii |
|
58 |
1 57
|
bitri |
|