Metamath Proof Explorer


Theorem elznn0nn

Description: Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004)

Ref Expression
Assertion elznn0nn N N 0 N N

Proof

Step Hyp Ref Expression
1 elz N N N = 0 N N
2 andi N N = 0 N N N N = 0 N N N
3 df-3or N = 0 N N N = 0 N N
4 3 anbi2i N N = 0 N N N N = 0 N N
5 nn0re N 0 N
6 5 pm4.71ri N 0 N N 0
7 elnn0 N 0 N N = 0
8 orcom N N = 0 N = 0 N
9 7 8 bitri N 0 N = 0 N
10 9 anbi2i N N 0 N N = 0 N
11 6 10 bitri N 0 N N = 0 N
12 11 orbi1i N 0 N N N N = 0 N N N
13 2 4 12 3bitr4i N N = 0 N N N 0 N N
14 1 13 bitri N N 0 N N