Metamath Proof Explorer


Theorem emcl

Description: Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Assertion emcl γ 1 log 2 1

Proof

Step Hyp Ref Expression
1 eqid n m = 1 n 1 m log n = n m = 1 n 1 m log n
2 eqid n m = 1 n 1 m log n + 1 = n m = 1 n 1 m log n + 1
3 eqid n log 1 + 1 n = n log 1 + 1 n
4 oveq2 k = n 1 k = 1 n
5 4 oveq2d k = n 1 + 1 k = 1 + 1 n
6 5 fveq2d k = n log 1 + 1 k = log 1 + 1 n
7 4 6 oveq12d k = n 1 k log 1 + 1 k = 1 n log 1 + 1 n
8 7 cbvmptv k 1 k log 1 + 1 k = n 1 n log 1 + 1 n
9 1 2 3 8 emcllem7 γ 1 log 2 1 n m = 1 n 1 m log n : γ 1 n m = 1 n 1 m log n + 1 : 1 log 2 γ
10 9 simp1i γ 1 log 2 1