Metamath Proof Explorer


Theorem emcllem1

Description: Lemma for emcl . The series F and G are sequences of real numbers that approach gamma from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F = n m = 1 n 1 m log n
emcl.2 G = n m = 1 n 1 m log n + 1
Assertion emcllem1 F : G :

Proof

Step Hyp Ref Expression
1 emcl.1 F = n m = 1 n 1 m log n
2 emcl.2 G = n m = 1 n 1 m log n + 1
3 fzfid n 1 n Fin
4 elfznn m 1 n m
5 4 adantl n m 1 n m
6 5 nnrecred n m 1 n 1 m
7 3 6 fsumrecl n m = 1 n 1 m
8 nnrp n n +
9 8 relogcld n log n
10 7 9 resubcld n m = 1 n 1 m log n
11 1 10 fmpti F :
12 peano2nn n n + 1
13 12 nnrpd n n + 1 +
14 13 relogcld n log n + 1
15 7 14 resubcld n m = 1 n 1 m log n + 1
16 2 15 fmpti G :
17 11 16 pm3.2i F : G :