Metamath Proof Explorer


Theorem emcllem2

Description: Lemma for emcl . F is increasing, and G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F = n m = 1 n 1 m log n
emcl.2 G = n m = 1 n 1 m log n + 1
Assertion emcllem2 N F N + 1 F N G N G N + 1

Proof

Step Hyp Ref Expression
1 emcl.1 F = n m = 1 n 1 m log n
2 emcl.2 G = n m = 1 n 1 m log n + 1
3 peano2nn N N + 1
4 3 nnrecred N 1 N + 1
5 3 nnrpd N N + 1 +
6 5 relogcld N log N + 1
7 nnrp N N +
8 7 relogcld N log N
9 6 8 resubcld N log N + 1 log N
10 fzfid N 1 N Fin
11 elfznn m 1 N m
12 11 adantl N m 1 N m
13 12 nnrecred N m 1 N 1 m
14 10 13 fsumrecl N m = 1 N 1 m
15 5 rpreccld N 1 N + 1 +
16 15 rpge0d N 0 1 N + 1
17 1div1e1 1 1 = 1
18 1re 1
19 ltaddrp 1 N + 1 < 1 + N
20 18 7 19 sylancr N 1 < 1 + N
21 ax-1cn 1
22 nncn N N
23 addcom 1 N 1 + N = N + 1
24 21 22 23 sylancr N 1 + N = N + 1
25 20 24 breqtrd N 1 < N + 1
26 17 25 eqbrtrid N 1 1 < N + 1
27 3 nnred N N + 1
28 3 nngt0d N 0 < N + 1
29 0lt1 0 < 1
30 ltrec1 1 0 < 1 N + 1 0 < N + 1 1 1 < N + 1 1 N + 1 < 1
31 18 29 30 mpanl12 N + 1 0 < N + 1 1 1 < N + 1 1 N + 1 < 1
32 27 28 31 syl2anc N 1 1 < N + 1 1 N + 1 < 1
33 26 32 mpbid N 1 N + 1 < 1
34 4 16 33 eflegeo N e 1 N + 1 1 1 1 N + 1
35 27 recnd N N + 1
36 nnne0 N N 0
37 3 nnne0d N N + 1 0
38 22 35 36 37 recdivd N 1 N N + 1 = N + 1 N
39 1cnd N 1
40 35 39 35 37 divsubdird N N + 1 - 1 N + 1 = N + 1 N + 1 1 N + 1
41 pncan N 1 N + 1 - 1 = N
42 22 21 41 sylancl N N + 1 - 1 = N
43 42 oveq1d N N + 1 - 1 N + 1 = N N + 1
44 35 37 dividd N N + 1 N + 1 = 1
45 44 oveq1d N N + 1 N + 1 1 N + 1 = 1 1 N + 1
46 40 43 45 3eqtr3rd N 1 1 N + 1 = N N + 1
47 46 oveq2d N 1 1 1 N + 1 = 1 N N + 1
48 5 7 rpdivcld N N + 1 N +
49 48 reeflogd N e log N + 1 N = N + 1 N
50 38 47 49 3eqtr4d N 1 1 1 N + 1 = e log N + 1 N
51 34 50 breqtrd N e 1 N + 1 e log N + 1 N
52 5 7 relogdivd N log N + 1 N = log N + 1 log N
53 52 9 eqeltrd N log N + 1 N
54 efle 1 N + 1 log N + 1 N 1 N + 1 log N + 1 N e 1 N + 1 e log N + 1 N
55 4 53 54 syl2anc N 1 N + 1 log N + 1 N e 1 N + 1 e log N + 1 N
56 51 55 mpbird N 1 N + 1 log N + 1 N
57 56 52 breqtrd N 1 N + 1 log N + 1 log N
58 4 9 14 57 leadd2dd N m = 1 N 1 m + 1 N + 1 m = 1 N 1 m + log N + 1 - log N
59 id N N
60 nnuz = 1
61 59 60 eleqtrdi N N 1
62 elfznn m 1 N + 1 m
63 62 adantl N m 1 N + 1 m
64 63 nnrecred N m 1 N + 1 1 m
65 64 recnd N m 1 N + 1 1 m
66 oveq2 m = N + 1 1 m = 1 N + 1
67 61 65 66 fsump1 N m = 1 N + 1 1 m = m = 1 N 1 m + 1 N + 1
68 6 recnd N log N + 1
69 14 recnd N m = 1 N 1 m
70 8 recnd N log N
71 68 69 70 addsub12d N log N + 1 + m = 1 N 1 m - log N = m = 1 N 1 m + log N + 1 - log N
72 58 67 71 3brtr4d N m = 1 N + 1 1 m log N + 1 + m = 1 N 1 m - log N
73 fzfid N 1 N + 1 Fin
74 73 64 fsumrecl N m = 1 N + 1 1 m
75 14 8 resubcld N m = 1 N 1 m log N
76 74 6 75 lesubadd2d N m = 1 N + 1 1 m log N + 1 m = 1 N 1 m log N m = 1 N + 1 1 m log N + 1 + m = 1 N 1 m - log N
77 72 76 mpbird N m = 1 N + 1 1 m log N + 1 m = 1 N 1 m log N
78 oveq2 n = N + 1 1 n = 1 N + 1
79 78 sumeq1d n = N + 1 m = 1 n 1 m = m = 1 N + 1 1 m
80 fveq2 n = N + 1 log n = log N + 1
81 79 80 oveq12d n = N + 1 m = 1 n 1 m log n = m = 1 N + 1 1 m log N + 1
82 ovex m = 1 N + 1 1 m log N + 1 V
83 81 1 82 fvmpt N + 1 F N + 1 = m = 1 N + 1 1 m log N + 1
84 3 83 syl N F N + 1 = m = 1 N + 1 1 m log N + 1
85 oveq2 n = N 1 n = 1 N
86 85 sumeq1d n = N m = 1 n 1 m = m = 1 N 1 m
87 fveq2 n = N log n = log N
88 86 87 oveq12d n = N m = 1 n 1 m log n = m = 1 N 1 m log N
89 ovex m = 1 N 1 m log N V
90 88 1 89 fvmpt N F N = m = 1 N 1 m log N
91 77 84 90 3brtr4d N F N + 1 F N
92 peano2nn N + 1 N + 1 + 1
93 3 92 syl N N + 1 + 1
94 93 nnrpd N N + 1 + 1 +
95 94 relogcld N log N + 1 + 1
96 95 6 resubcld N log N + 1 + 1 log N + 1
97 logdifbnd N + 1 + log N + 1 + 1 log N + 1 1 N + 1
98 5 97 syl N log N + 1 + 1 log N + 1 1 N + 1
99 96 4 14 98 leadd2dd N m = 1 N 1 m + log N + 1 + 1 - log N + 1 m = 1 N 1 m + 1 N + 1
100 95 recnd N log N + 1 + 1
101 69 68 100 subadd23d N m = 1 N 1 m - log N + 1 + log N + 1 + 1 = m = 1 N 1 m + log N + 1 + 1 - log N + 1
102 99 101 67 3brtr4d N m = 1 N 1 m - log N + 1 + log N + 1 + 1 m = 1 N + 1 1 m
103 14 6 resubcld N m = 1 N 1 m log N + 1
104 leaddsub m = 1 N 1 m log N + 1 log N + 1 + 1 m = 1 N + 1 1 m m = 1 N 1 m - log N + 1 + log N + 1 + 1 m = 1 N + 1 1 m m = 1 N 1 m log N + 1 m = 1 N + 1 1 m log N + 1 + 1
105 103 95 74 104 syl3anc N m = 1 N 1 m - log N + 1 + log N + 1 + 1 m = 1 N + 1 1 m m = 1 N 1 m log N + 1 m = 1 N + 1 1 m log N + 1 + 1
106 102 105 mpbid N m = 1 N 1 m log N + 1 m = 1 N + 1 1 m log N + 1 + 1
107 fvoveq1 n = N log n + 1 = log N + 1
108 86 107 oveq12d n = N m = 1 n 1 m log n + 1 = m = 1 N 1 m log N + 1
109 ovex m = 1 N 1 m log N + 1 V
110 108 2 109 fvmpt N G N = m = 1 N 1 m log N + 1
111 fvoveq1 n = N + 1 log n + 1 = log N + 1 + 1
112 79 111 oveq12d n = N + 1 m = 1 n 1 m log n + 1 = m = 1 N + 1 1 m log N + 1 + 1
113 ovex m = 1 N + 1 1 m log N + 1 + 1 V
114 112 2 113 fvmpt N + 1 G N + 1 = m = 1 N + 1 1 m log N + 1 + 1
115 3 114 syl N G N + 1 = m = 1 N + 1 1 m log N + 1 + 1
116 106 110 115 3brtr4d N G N G N + 1
117 91 116 jca N F N + 1 F N G N G N + 1