Metamath Proof Explorer


Theorem emcllem3

Description: Lemma for emcl . The function H is the difference between F and G . (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F = n m = 1 n 1 m log n
emcl.2 G = n m = 1 n 1 m log n + 1
emcl.3 H = n log 1 + 1 n
Assertion emcllem3 N H N = F N G N

Proof

Step Hyp Ref Expression
1 emcl.1 F = n m = 1 n 1 m log n
2 emcl.2 G = n m = 1 n 1 m log n + 1
3 emcl.3 H = n log 1 + 1 n
4 peano2nn N N + 1
5 4 nnrpd N N + 1 +
6 nnrp N N +
7 5 6 relogdivd N log N + 1 N = log N + 1 log N
8 nncn N N
9 1cnd N 1
10 nnne0 N N 0
11 8 9 8 10 divdird N N + 1 N = N N + 1 N
12 8 10 dividd N N N = 1
13 12 oveq1d N N N + 1 N = 1 + 1 N
14 11 13 eqtr2d N 1 + 1 N = N + 1 N
15 14 fveq2d N log 1 + 1 N = log N + 1 N
16 fzfid N 1 N Fin
17 elfznn m 1 N m
18 17 adantl N m 1 N m
19 18 nnrecred N m 1 N 1 m
20 16 19 fsumrecl N m = 1 N 1 m
21 20 recnd N m = 1 N 1 m
22 6 relogcld N log N
23 22 recnd N log N
24 5 relogcld N log N + 1
25 24 recnd N log N + 1
26 21 23 25 nnncan1d N m = 1 N 1 m - log N - m = 1 N 1 m log N + 1 = log N + 1 log N
27 7 15 26 3eqtr4d N log 1 + 1 N = m = 1 N 1 m - log N - m = 1 N 1 m log N + 1
28 oveq2 n = N 1 n = 1 N
29 28 oveq2d n = N 1 + 1 n = 1 + 1 N
30 29 fveq2d n = N log 1 + 1 n = log 1 + 1 N
31 fvex log 1 + 1 N V
32 30 3 31 fvmpt N H N = log 1 + 1 N
33 oveq2 n = N 1 n = 1 N
34 33 sumeq1d n = N m = 1 n 1 m = m = 1 N 1 m
35 fveq2 n = N log n = log N
36 34 35 oveq12d n = N m = 1 n 1 m log n = m = 1 N 1 m log N
37 ovex m = 1 N 1 m log N V
38 36 1 37 fvmpt N F N = m = 1 N 1 m log N
39 fvoveq1 n = N log n + 1 = log N + 1
40 34 39 oveq12d n = N m = 1 n 1 m log n + 1 = m = 1 N 1 m log N + 1
41 ovex m = 1 N 1 m log N + 1 V
42 40 2 41 fvmpt N G N = m = 1 N 1 m log N + 1
43 38 42 oveq12d N F N G N = m = 1 N 1 m - log N - m = 1 N 1 m log N + 1
44 27 32 43 3eqtr4d N H N = F N G N