Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|
2 |
|
emcl.2 |
|
3 |
|
emcl.3 |
|
4 |
|
peano2nn |
|
5 |
4
|
nnrpd |
|
6 |
|
nnrp |
|
7 |
5 6
|
relogdivd |
|
8 |
|
nncn |
|
9 |
|
1cnd |
|
10 |
|
nnne0 |
|
11 |
8 9 8 10
|
divdird |
|
12 |
8 10
|
dividd |
|
13 |
12
|
oveq1d |
|
14 |
11 13
|
eqtr2d |
|
15 |
14
|
fveq2d |
|
16 |
|
fzfid |
|
17 |
|
elfznn |
|
18 |
17
|
adantl |
|
19 |
18
|
nnrecred |
|
20 |
16 19
|
fsumrecl |
|
21 |
20
|
recnd |
|
22 |
6
|
relogcld |
|
23 |
22
|
recnd |
|
24 |
5
|
relogcld |
|
25 |
24
|
recnd |
|
26 |
21 23 25
|
nnncan1d |
|
27 |
7 15 26
|
3eqtr4d |
|
28 |
|
oveq2 |
|
29 |
28
|
oveq2d |
|
30 |
29
|
fveq2d |
|
31 |
|
fvex |
|
32 |
30 3 31
|
fvmpt |
|
33 |
|
oveq2 |
|
34 |
33
|
sumeq1d |
|
35 |
|
fveq2 |
|
36 |
34 35
|
oveq12d |
|
37 |
|
ovex |
|
38 |
36 1 37
|
fvmpt |
|
39 |
|
fvoveq1 |
|
40 |
34 39
|
oveq12d |
|
41 |
|
ovex |
|
42 |
40 2 41
|
fvmpt |
|
43 |
38 42
|
oveq12d |
|
44 |
27 32 43
|
3eqtr4d |
|