Metamath Proof Explorer


Theorem emcllem4

Description: Lemma for emcl . The difference between series F and G tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F = n m = 1 n 1 m log n
emcl.2 G = n m = 1 n 1 m log n + 1
emcl.3 H = n log 1 + 1 n
Assertion emcllem4 H 0

Proof

Step Hyp Ref Expression
1 emcl.1 F = n m = 1 n 1 m log n
2 emcl.2 G = n m = 1 n 1 m log n + 1
3 emcl.3 H = n log 1 + 1 n
4 nnuz = 1
5 1zzd 1
6 ax-1cn 1
7 divcnv 1 n 1 n 0
8 6 7 mp1i n 1 n 0
9 nnex V
10 9 mptex n log 1 + 1 n V
11 3 10 eqeltri H V
12 11 a1i H V
13 oveq2 n = m 1 n = 1 m
14 eqid n 1 n = n 1 n
15 ovex 1 m V
16 13 14 15 fvmpt m n 1 n m = 1 m
17 16 adantl m n 1 n m = 1 m
18 nnrecre m 1 m
19 18 adantl m 1 m
20 17 19 eqeltrd m n 1 n m
21 13 oveq2d n = m 1 + 1 n = 1 + 1 m
22 21 fveq2d n = m log 1 + 1 n = log 1 + 1 m
23 fvex log 1 + 1 m V
24 22 3 23 fvmpt m H m = log 1 + 1 m
25 24 adantl m H m = log 1 + 1 m
26 1rp 1 +
27 nnrp m m +
28 27 adantl m m +
29 28 rpreccld m 1 m +
30 rpaddcl 1 + 1 m + 1 + 1 m +
31 26 29 30 sylancr m 1 + 1 m +
32 31 rpred m 1 + 1 m
33 1re 1
34 ltaddrp 1 1 m + 1 < 1 + 1 m
35 33 29 34 sylancr m 1 < 1 + 1 m
36 32 35 rplogcld m log 1 + 1 m +
37 25 36 eqeltrd m H m +
38 37 rpred m H m
39 31 relogcld m log 1 + 1 m
40 efgt1p 1 m + 1 + 1 m < e 1 m
41 29 40 syl m 1 + 1 m < e 1 m
42 19 rpefcld m e 1 m +
43 logltb 1 + 1 m + e 1 m + 1 + 1 m < e 1 m log 1 + 1 m < log e 1 m
44 31 42 43 syl2anc m 1 + 1 m < e 1 m log 1 + 1 m < log e 1 m
45 41 44 mpbid m log 1 + 1 m < log e 1 m
46 19 relogefd m log e 1 m = 1 m
47 45 46 breqtrd m log 1 + 1 m < 1 m
48 39 19 47 ltled m log 1 + 1 m 1 m
49 48 25 17 3brtr4d m H m n 1 n m
50 37 rpge0d m 0 H m
51 4 5 8 12 20 38 49 50 climsqz2 H 0
52 51 mptru H 0