Step |
Hyp |
Ref |
Expression |
1 |
|
emcl.1 |
|
2 |
|
emcl.2 |
|
3 |
|
emcl.3 |
|
4 |
|
emcl.4 |
|
5 |
|
elfznn |
|
6 |
5
|
adantl |
|
7 |
6
|
nncnd |
|
8 |
|
1cnd |
|
9 |
6
|
nnne0d |
|
10 |
7 8 7 9
|
divdird |
|
11 |
7 9
|
dividd |
|
12 |
11
|
oveq1d |
|
13 |
10 12
|
eqtrd |
|
14 |
13
|
fveq2d |
|
15 |
|
peano2nn |
|
16 |
6 15
|
syl |
|
17 |
16
|
nnrpd |
|
18 |
6
|
nnrpd |
|
19 |
17 18
|
relogdivd |
|
20 |
14 19
|
eqtr3d |
|
21 |
20
|
sumeq2dv |
|
22 |
|
fveq2 |
|
23 |
|
fveq2 |
|
24 |
|
fveq2 |
|
25 |
|
fveq2 |
|
26 |
|
nnz |
|
27 |
|
peano2nn |
|
28 |
|
nnuz |
|
29 |
27 28
|
eleqtrdi |
|
30 |
|
elfznn |
|
31 |
30
|
adantl |
|
32 |
31
|
nnrpd |
|
33 |
32
|
relogcld |
|
34 |
33
|
recnd |
|
35 |
22 23 24 25 26 29 34
|
telfsum2 |
|
36 |
|
log1 |
|
37 |
36
|
oveq2i |
|
38 |
27
|
nnrpd |
|
39 |
38
|
relogcld |
|
40 |
39
|
recnd |
|
41 |
40
|
subid1d |
|
42 |
37 41
|
eqtrid |
|
43 |
21 35 42
|
3eqtrd |
|
44 |
43
|
oveq2d |
|
45 |
|
fzfid |
|
46 |
6
|
nnrecred |
|
47 |
46
|
recnd |
|
48 |
|
1rp |
|
49 |
18
|
rpreccld |
|
50 |
|
rpaddcl |
|
51 |
48 49 50
|
sylancr |
|
52 |
51
|
relogcld |
|
53 |
52
|
recnd |
|
54 |
45 47 53
|
fsumsub |
|
55 |
|
oveq2 |
|
56 |
55
|
oveq2d |
|
57 |
56
|
fveq2d |
|
58 |
55 57
|
oveq12d |
|
59 |
|
ovex |
|
60 |
58 4 59
|
fvmpt |
|
61 |
6 60
|
syl |
|
62 |
|
id |
|
63 |
62 28
|
eleqtrdi |
|
64 |
46 52
|
resubcld |
|
65 |
64
|
recnd |
|
66 |
61 63 65
|
fsumser |
|
67 |
54 66
|
eqtr3d |
|
68 |
44 67
|
eqtr3d |
|
69 |
68
|
mpteq2ia |
|
70 |
|
1z |
|
71 |
|
seqfn |
|
72 |
70 71
|
ax-mp |
|
73 |
28
|
fneq2i |
|
74 |
72 73
|
mpbir |
|
75 |
|
dffn5 |
|
76 |
74 75
|
mpbi |
|
77 |
69 2 76
|
3eqtr4i |
|