Metamath Proof Explorer


Theorem en0

Description: The empty set is equinumerous only to itself. Exercise 1 of TakeutiZaring p. 88. (Contributed by NM, 27-May-1998) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion en0 A A =

Proof

Step Hyp Ref Expression
1 encv A A V V
2 breng A V V A f f : A 1-1 onto
3 1 2 syl A A f f : A 1-1 onto
4 3 ibi A f f : A 1-1 onto
5 f1ocnv f : A 1-1 onto f -1 : 1-1 onto A
6 f1o00 f -1 : 1-1 onto A f -1 = A =
7 6 simprbi f -1 : 1-1 onto A A =
8 5 7 syl f : A 1-1 onto A =
9 8 exlimiv f f : A 1-1 onto A =
10 4 9 syl A A =
11 0ex V
12 f1oeq1 f = f : 1-1 onto : 1-1 onto
13 f1o0 : 1-1 onto
14 11 12 13 ceqsexv2d f f : 1-1 onto
15 breng V V f f : 1-1 onto
16 11 11 15 mp2an f f : 1-1 onto
17 14 16 mpbir
18 breq1 A = A
19 17 18 mpbiri A = A
20 10 19 impbii A A =