Metamath Proof Explorer


Theorem en0OLD

Description: Obsolete version of en0 as of 23-Sep-2024. (Contributed by NM, 27-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en0OLD A A =

Proof

Step Hyp Ref Expression
1 bren A f f : A 1-1 onto
2 f1ocnv f : A 1-1 onto f -1 : 1-1 onto A
3 f1o00 f -1 : 1-1 onto A f -1 = A =
4 3 simprbi f -1 : 1-1 onto A A =
5 2 4 syl f : A 1-1 onto A =
6 5 exlimiv f f : A 1-1 onto A =
7 1 6 sylbi A A =
8 0ex V
9 f1oeq1 f = f : 1-1 onto : 1-1 onto
10 f1o0 : 1-1 onto
11 8 9 10 ceqsexv2d f f : 1-1 onto
12 bren f f : 1-1 onto
13 11 12 mpbir
14 breq1 A = A
15 13 14 mpbiri A = A
16 7 15 impbii A A =