Metamath Proof Explorer


Theorem en1

Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004) Avoid ax-un . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion en1 A 1 𝑜 x A = x

Proof

Step Hyp Ref Expression
1 df1o2 1 𝑜 =
2 1 breq2i A 1 𝑜 A
3 encv A A V V
4 breng A V V A f f : A 1-1 onto
5 3 4 syl A A f f : A 1-1 onto
6 5 ibi A f f : A 1-1 onto
7 2 6 sylbi A 1 𝑜 f f : A 1-1 onto
8 f1ocnv f : A 1-1 onto f -1 : 1-1 onto A
9 f1ofo f -1 : 1-1 onto A f -1 : onto A
10 forn f -1 : onto A ran f -1 = A
11 9 10 syl f -1 : 1-1 onto A ran f -1 = A
12 f1of f -1 : 1-1 onto A f -1 : A
13 0ex V
14 13 fsn2 f -1 : A f -1 A f -1 = f -1
15 14 simprbi f -1 : A f -1 = f -1
16 12 15 syl f -1 : 1-1 onto A f -1 = f -1
17 16 rneqd f -1 : 1-1 onto A ran f -1 = ran f -1
18 13 rnsnop ran f -1 = f -1
19 17 18 eqtrdi f -1 : 1-1 onto A ran f -1 = f -1
20 11 19 eqtr3d f -1 : 1-1 onto A A = f -1
21 fvex f -1 V
22 sneq x = f -1 x = f -1
23 22 eqeq2d x = f -1 A = x A = f -1
24 21 23 spcev A = f -1 x A = x
25 8 20 24 3syl f : A 1-1 onto x A = x
26 25 exlimiv f f : A 1-1 onto x A = x
27 7 26 syl A 1 𝑜 x A = x
28 vex x V
29 28 ensn1 x 1 𝑜
30 breq1 A = x A 1 𝑜 x 1 𝑜
31 29 30 mpbiri A = x A 1 𝑜
32 31 exlimiv x A = x A 1 𝑜
33 27 32 impbii A 1 𝑜 x A = x