Metamath Proof Explorer


Theorem en1bOLD

Description: Obsolete version of en1b as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en1bOLD A 1 𝑜 A = A

Proof

Step Hyp Ref Expression
1 en1 A 1 𝑜 x A = x
2 id A = x A = x
3 unieq A = x A = x
4 vex x V
5 4 unisn x = x
6 3 5 eqtrdi A = x A = x
7 6 sneqd A = x A = x
8 2 7 eqtr4d A = x A = A
9 8 exlimiv x A = x A = A
10 1 9 sylbi A 1 𝑜 A = A
11 id A = A A = A
12 snex A V
13 11 12 eqeltrdi A = A A V
14 13 uniexd A = A A V
15 ensn1g A V A 1 𝑜
16 14 15 syl A = A A 1 𝑜
17 11 16 eqbrtrd A = A A 1 𝑜
18 10 17 impbii A 1 𝑜 A = A