Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets
en1eqsn
Next ⟩
en1eqsnbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
en1eqsn
Description:
A set with one element is a singleton.
(Contributed by
FL
, 18-Aug-2008)
Ref
Expression
Assertion
en1eqsn
⊢
A
∈
B
∧
B
≈
1
𝑜
→
B
=
A
Proof
Step
Hyp
Ref
Expression
1
1onn
⊢
1
𝑜
∈
ω
2
ssid
⊢
1
𝑜
⊆
1
𝑜
3
ssnnfi
⊢
1
𝑜
∈
ω
∧
1
𝑜
⊆
1
𝑜
→
1
𝑜
∈
Fin
4
1
2
3
mp2an
⊢
1
𝑜
∈
Fin
5
enfii
⊢
1
𝑜
∈
Fin
∧
B
≈
1
𝑜
→
B
∈
Fin
6
4
5
mpan
⊢
B
≈
1
𝑜
→
B
∈
Fin
7
6
adantl
⊢
A
∈
B
∧
B
≈
1
𝑜
→
B
∈
Fin
8
snssi
⊢
A
∈
B
→
A
⊆
B
9
8
adantr
⊢
A
∈
B
∧
B
≈
1
𝑜
→
A
⊆
B
10
ensn1g
⊢
A
∈
B
→
A
≈
1
𝑜
11
ensym
⊢
B
≈
1
𝑜
→
1
𝑜
≈
B
12
entr
⊢
A
≈
1
𝑜
∧
1
𝑜
≈
B
→
A
≈
B
13
10
11
12
syl2an
⊢
A
∈
B
∧
B
≈
1
𝑜
→
A
≈
B
14
fisseneq
⊢
B
∈
Fin
∧
A
⊆
B
∧
A
≈
B
→
A
=
B
15
7
9
13
14
syl3anc
⊢
A
∈
B
∧
B
≈
1
𝑜
→
A
=
B
16
15
eqcomd
⊢
A
∈
B
∧
B
≈
1
𝑜
→
B
=
A