Metamath Proof Explorer


Theorem en1eqsn

Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008)

Ref Expression
Assertion en1eqsn A B B 1 𝑜 B = A

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 ssid 1 𝑜 1 𝑜
3 ssnnfi 1 𝑜 ω 1 𝑜 1 𝑜 1 𝑜 Fin
4 1 2 3 mp2an 1 𝑜 Fin
5 enfii 1 𝑜 Fin B 1 𝑜 B Fin
6 4 5 mpan B 1 𝑜 B Fin
7 6 adantl A B B 1 𝑜 B Fin
8 snssi A B A B
9 8 adantr A B B 1 𝑜 A B
10 ensn1g A B A 1 𝑜
11 ensym B 1 𝑜 1 𝑜 B
12 entr A 1 𝑜 1 𝑜 B A B
13 10 11 12 syl2an A B B 1 𝑜 A B
14 fisseneq B Fin A B A B A = B
15 7 9 13 14 syl3anc A B B 1 𝑜 A = B
16 15 eqcomd A B B 1 𝑜 B = A