Database
BASIC TOPOLOGY
Topology
Topological bases
en1top
Next ⟩
en2top
Metamath Proof Explorer
Ascii
Unicode
Theorem
en1top
Description:
{ (/) }
is the only topology with one element.
(Contributed by
FL
, 18-Aug-2008)
Ref
Expression
Assertion
en1top
⊢
J
∈
Top
→
J
≈
1
𝑜
↔
J
=
∅
Proof
Step
Hyp
Ref
Expression
1
0opn
⊢
J
∈
Top
→
∅
∈
J
2
en1eqsn
⊢
∅
∈
J
∧
J
≈
1
𝑜
→
J
=
∅
3
2
ex
⊢
∅
∈
J
→
J
≈
1
𝑜
→
J
=
∅
4
1
3
syl
⊢
J
∈
Top
→
J
≈
1
𝑜
→
J
=
∅
5
id
⊢
J
=
∅
→
J
=
∅
6
0ex
⊢
∅
∈
V
7
6
ensn1
⊢
∅
≈
1
𝑜
8
5
7
eqbrtrdi
⊢
J
=
∅
→
J
≈
1
𝑜
9
4
8
impbid1
⊢
J
∈
Top
→
J
≈
1
𝑜
↔
J
=
∅